Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction

نویسندگان

  • Haifeng Dong
  • Conghui Liu
  • Haitao Ye
  • Linping Hu
  • Bunshi Fugetsu
  • Wenhao Dai
  • Yu Cao
  • Xueqiang Qi
  • Huiting Lu
  • Xueji Zhang
چکیده

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS(2)) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS(2) nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS(2) and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS(2)/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS(2)/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction

In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...

متن کامل

Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability.

Fabricating a cost effective hydrogen evolution reaction catalyst without using precious metal elements is in crucial demand for environmentally-benign energy production. In this work, the thin and edge-rich molybdenum disulfide nanosheets, with carbon doped in the interlayers and decorated on graphene, were developed by a facile solvothermal process. The as-synthesized nanohybrids exhibited hi...

متن کامل

Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution.

Molybdenum disulfide (MoS2) with the two-dimensional layered structure has been widely studied as an advanced catalyst for hydrogen evolution reaction (HER). Intercalating guest species into the van der Waals gaps of MoS2 has been demonstrated as an effective approach to tune the electronic structure and consequently improve the HER catalytic activity. In this work, by constructing nanostructur...

متن کامل

Flexible and porous catalyst electrodes constructed by Co nanoparticles@nitrogen-doped graphene films for highly efficient hydrogen evolution

The development of electrodes composed of non-noble-metal catalysts with both excellent activity and high stability for the hydrogen evolution reaction (HER) is essential for hydrogen production. In this work, a flexible and robust film electrode based on cobalt nanoparticles embedded into the interlamination of N-doped graphene film (Co@NGF) is fabricated by simple vacuum filtration combined w...

متن کامل

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015